

Innovation en géométallurgie et comminution

Frédéric Couët, ing., Ph. D.

Canada

conomique Canada régions du Québec

Ministère de l'Énergie et des Ressources naturelles Ministère de l'Économie, de la Science et de l'Innovation

Energy bandwidth study (DOE, 2010)

Geometallurgy Spatial model and process model

From Metso.com

100

-

-

17.

GeM Comminution index Geometallurgical mapping

Kojovic et al. (2010) XXV International mineral processing congress. © COREM (2018)

0.1

100

10

Size K₈₀ (mm)

1,000

0.01

0.001

© COREM (2018)

AG Mill

AMCT

AWI

DWT

SMC Test®

SAGDesign

AG Pilot Plant

(SVT)

JKRBT®

SPI®

- Uses a bench scale mill similar to SAG mill operation.
- Is similar to Bond methodology.
- Gives SAG grindability in kWh/t.

Crusher indicator versus SVT Set-up and methodology

Linear regression model SVT ~ $b_0 + b_1 F_{70} + b_2 P_{70} + b_3 P_{70} E_m$

 $R^2 = 0.71$ (5 times 5-fold cross-validation)

Repeatability 16 repetitions on a reference material

Robustness Closed side setting drift

Effect of iron grade on rock hardness

 Composition is correlated to Sag Variability Tests for drill cores.

Characterization

A typical characterization campaign scenario

- 50: SVT (±10%)
- 500: Crusher index (±17%)
- All: Chemical analysis
- Models
 - SVT ~ Crusher index (with energy)
 - SVT ~ Crusher index (without energy)
 - SVT ~ Chemical analysis
- Grindability for all samples but with different confidence intervals

Sequential spatial sampling

Couet, F. et al., 2015. A new methodology for geometallurgical mapping of ore hardness. *Proceedings of SAG conference*, Vancouver.

Real-time control and reconciliation Online hardness indicator at plant scale

Segmentation of bimodal size distributions

3D vision system Plant data acquisition and analysis

- Estimate the conveyor geometry.
- Measure the speed of the conveyor (real-time).

3D vision system

Plant data acquisition and analysis

- Use volume and speed to estimate the volume flow rate.
- Possibility to estimate bulk density and iron ore content.

Tonnage validation (AMEM)

3D vision system Plant data acquisition and analysis

Real-time control and reconciliation Online hardness indicator at plant scale

Real-time control and reconciliation Reconciliation of the block model

Information from the concentrator is used to update locally the block model.

Wambeke, T. & Benndorf, J., 2017. *Mathematical Geosciences*, 49(1). © COREM (2018)

Traceability – Silo model

Traceability – From crusher to AG mill

Traceability – From mine to AG mill

What is SAGTools? Mill filling to optimize throughput

Powell & Mainza (2006) Extended grinding curves are essential to the comparison of milling performance.

Austin SAG Model

P = F(DEM) SAG Tools

P is the power evolved at the mill shell,

 J_x is the mill filling of component *x*, as a fraction of total mill volume

- ρ_x is the density of a component *x*,
- w_C is the charge %solids
- ϕ_C is the mill speed,
- $\varepsilon_{\scriptscriptstyle B}$ is the porosity of the rock and ball bed,

https://fredcou.shinyapps.io/demo_power_model/

Installation of 3D cameras in a 6'x2' AG/SAG mill

What is SAG Tools? Discrete element method

E

Quebec Mine 2015

SAG Tools

What is SAG Tools? User interface

SAG Goldex

300

270

Quebec Mine 2015

Mineralogical tools

Figure 1 – Overview of the mineralogical tools being developed for the iron ore beneficiation process

Lévesque, S. et al., 2016. Mineralogical tools for ore characterization – key data at all steps of iron ore concentration. *IMPC*.

IMPC 2016

Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction

Laura Pérez-Barnuevo^{a,*}, Sylvie Lévesque^a, Claude Bazin^b

Fig. 1. Most frequent rock textural patterns identified at Mont-Wright: (a) Massive (Ms). (b) Bright banded (BBd). (c) Dark banded (DBd). (d) Mottled (Mo). (e) Layered (Ly). (f) Amphibolite (Amp). Images of the drill core round surface taken with a RGB digital camera.

Minerals Engineering 118 (2018) 87-96

Drill core textures

Table 2

Mount-Wright drill core texture library (from Pérez-Barnuevo et al., 2017).

Texture	Crusher energy (kJ/ kg)	Concentrate Grade		Liberation FeOx $(% > 95\%)$	Grain size P ₈₀ FeOx
		Fe (%)	SiO ₂ (%)	(70 - 5370)	(µm)
Ms	1.5–1.8	69.7	0.3	99.4	594
BBd	2.4-4.3	67.7	2.7	91.0	431
DBd	2.7-3.0	67.9	3.2	90.6	447
Mo	1.8-2.6	68.1	3.2	89.1	406
Ly	4.2-4.5	63.5	11.6	75.6	287
Amp	4.6–5.9	40.4	36.5	-	-

Geometallurgy Spatial model and process model

Forward

